Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dendritic and tumor cell fusions transduced with adenovirus encoding CD40L eradicate B-cell lymphoma and induce a Th17-type response

Abstract

Fusion of dendritic cells and tumor cells (FCs) constitutes a promising tool for generating an antitumor response because of their capacity to present tumor antigens and provide appropriate costimulatory signals. CD40–CD40L interaction has an important role in the maturation and survival of dendritic cells and provides critical help for T-cell priming. In this study, we sought to improve the effectiveness of FC vaccines in a murine model of B-cell lymphoma by engineering FCs to express CD40L by means of an adenovirus encoding CD40L (Adv-CD40L). Before transduction with Adv-CD40L, no CD40L expression was detected in FCs, DCs or tumor cells. The surface expression of CD40L in FC transduced with Adv-CD40L (FC-CD40L) ranged between 50 and 60%. FC-CD40L showed an enhanced expression of CD80, CD86, CD54 and MHC class II molecules and elicited a strong in vitro immune response in a syngeneic mixed lymphocyte reaction. Furthermore, FC-CD40L showed enhanced migration to secondary lymphoid organs. Splenocytes from mice treated with FC-CD40L had a dramatic increase in the production of IL-17, IL-6 and IFN-γ, compared with controls. Treatment with the FC-CD40L vaccine induced regression of established tumors and increased survival. Our data demonstrate that FC transduced with Adv-CD40L enhances the antitumor effect of FC vaccines in a murine lymphoma model and this is associated with an increased Th17-type immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Steinman RM . The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991; 9: 271–296.

    Article  CAS  PubMed  Google Scholar 

  2. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  PubMed  Google Scholar 

  3. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998; 4: 328–332.

    Article  CAS  PubMed  Google Scholar 

  4. Paglia P, Chiodoni C, Rodolfo M, Colombo MP . Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J Exp Med 1996; 183: 317–322.

    Article  CAS  PubMed  Google Scholar 

  5. Boczkowski D, Nair SK, Snyder D, Gilboa E . Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 1996; 184: 465–472.

    Article  CAS  PubMed  Google Scholar 

  6. Akiyama Y, Watanabe M, Maruyama K, Ruscetti FW, Wiltrout RH, Yamaguchi K . Enhancement of antitumor immunity against B16 melanoma tumor using genetically modified dendritic cells to produce cytokines. Gene Therapy 2000; 7: 2113–2121.

    Article  CAS  PubMed  Google Scholar 

  7. Stevenson FK, Rice J, Ottensmeier CH, Thirdborough SM, Zhu D . DNA fusion gene vaccines against cancer: from the laboratory to the clinic. Immunol Rev 2004; 199: 156–180.

    Article  CAS  PubMed  Google Scholar 

  8. Gong J, Chen D, Kashiwaba M, Li Y, Chen L, Takeuchi H et al. Reversal of tolerance to human MUC1 antigen in MUC1 transgenic mice immunized with fusions of dendritic and carcinoma cells. Proc Natl Acad Sci USA 1998; 95: 6279–6283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koido S, Hara E, Torii A, Homma S, Toyama Y, Kawahara H et al. Induction of antigen-specific CD4- and CD8-mediated T-cell responses by fusions of autologous dendritic cells and metastatic colorectal cancer cells. Int J Cancer 2005; 117: 587–595.

    Article  CAS  PubMed  Google Scholar 

  10. Koido S, Hara E, Homma S, Torii A, Mitsunaga M, Yanagisawa S et al. Streptococcal preparation OK-432 promotes fusion efficiency and enhances induction of antigen-specific CTL by fusions of dendritic cells and colorectal cancer cells. J Immunol 2007; 178: 613–622.

    Article  CAS  PubMed  Google Scholar 

  11. Guo G, Chen S, Zhang J, Luo L, Yu J, Dong H et al. Antitumor activity of a fusion of esophageal carcinoma cells with dendritic cells derived from cord blood. Vaccine 2005; 23: 5225–5230.

    Article  CAS  PubMed  Google Scholar 

  12. Homma S, Toda G, Gong J, Kufe D, Ohno T . Preventive antitumor activity against hepatocellular carcinoma (HCC) induced by immunization with fusions of dendritic cells and HCC cells in mice. J Gastroenterol 2001; 36: 764–771.

    Article  CAS  PubMed  Google Scholar 

  13. Linuma H, Okinaga K, Fukushima R, Inaba T, Iwasaki K, Okinaga A et al. Superior protective and therapeutic effects of IL-12 and IL-18 gene-transduced dendritic neuroblastoma fusion cells on liver metastasis of murine neuroblastoma. J Immunol 2006; 176: 3461–3469.

    Article  Google Scholar 

  14. Gong J, Koido S, Chen D, Tanaka Y, Huang L, Avigan D et al. Immunization against murine multiple myeloma with fusions of dendritic and plasmacytoma cells is potentiated by interleukin 12. Blood 2002; 99: 2512–2517.

    Article  CAS  PubMed  Google Scholar 

  15. Celluzzi CM, Falo Jr LD . Physical interaction between dendritic cells and tumor cells results in an immunogen that induces protective and therapeutic tumor rejection. J Immunol 1998; 160: 3081–3085.

    CAS  PubMed  Google Scholar 

  16. Gong J, Chen D, Kashiwaba M, Kufe D . Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat Med 1997; 3: 558–561.

    Article  CAS  PubMed  Google Scholar 

  17. Avigan D, Rosenblatt J, Vasir B, Wu Z, Bissonnette A, MacNamara C et al. Phase I study of vaccination with dendritic cell myeloma fusions. Blood (ASH Annual Meeting Abstracts) 2007; 110: (Abstract 284).

  18. Avigan D, Rosenblatt J, Vasir B, Wu Z, Bissonnette A, Somaiya P et al. Fusion cell vaccination in conjunction with stem cell transplantation is well tolerated, induces anti-tumor immunity and is associated with responses in patients with multiple myeloma. Blood (ASH Annual Meeting Abstracts) 2008; 112: (Abstract 826).

  19. van Kooten C, Banchereau J . Functions of CD40 on B cells, dendritic cells and other cells. Curr Opin Immunol 1997; 9: 330–337.

    Article  CAS  PubMed  Google Scholar 

  20. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G . Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 1996; 184: 747–752.

    Article  CAS  PubMed  Google Scholar 

  21. Frleta D, Lin JT, Quezada SA, Wade TK, Barth RJ, Noelle RJ et al. Distinctive maturation of in vitro versus in vivo anti-CD40 mAb-matured dendritic cells in mice. J Immunother 2003; 26: 72–84.

    Article  CAS  PubMed  Google Scholar 

  22. Schuurhuis DH, Laban S, Toes RE, Ricciardi-Castagnoli P, Kleijmeer MJ, van der Voort EI et al. Immature dendritic cells acquire CD8(+) cytotoxic T lymphocyte priming capacity upon activation by T helper cell-independent or -dependent stimuli. J Exp Med 2000; 192: 145–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ridge JP, Di Rosa F, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998; 393: 474–478.

    Article  CAS  PubMed  Google Scholar 

  24. Kikuchi T, Moore MA, Crystal RG . Dendritic cells modified to express CD40 ligand elicit therapeutic immunity against preexisting murine tumors. Blood 2000; 96: 91–99.

    CAS  PubMed  Google Scholar 

  25. Russo V, Tanzarella S, Dalerba P, Rigatti D, Rovere P, Villa A et al. Dendritic cells acquire the MAGE-3 human tumor antigen from apoptotic cells and induce a class I-restricted T cell response. Proc Natl Acad Sci USA 2000; 97: 2185–2190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gong J, Koido S, Calderwood SK . Cell fusion: from hybridoma to dendritic cell-based vaccine. Expert Rev Vaccines 2008; 7: 1055–1068.

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Saffold S, Cao X, Krauss J, Chen W . Eliciting T cell immunity against poorly immunogenic tumors by immunization with dendritic cell-tumor fusion vaccines. J Immunol 1998; 161: 5516–5524.

    CAS  PubMed  Google Scholar 

  28. Lespagnard L, Mettens P, Verheyden AM, Tasiaux N, Thielemans K, van Meirvenne S et al. Dendritic cells fused with mastocytoma cells elicit therapeutic antitumor immunity. Int J Cancer 1998; 76: 250–258.

    Article  CAS  PubMed  Google Scholar 

  29. Kim GY, Chae HJ, Kim KH, Yoon MS, Lee KS, Lee CM et al. Dendritic cell-tumor fusion vaccine prevents tumor growth in vivo. Biosci Biotechnol Biochem 2007; 71: 215–221.

    Article  CAS  PubMed  Google Scholar 

  30. Coughlin CM, Wysocka M, Trinchieri G, Lee WM . The effect of interleukin 12 desensitization on the antitumor efficacy of recombinant interleukin 12. Cancer Res 1997; 57: 2460–2467.

    CAS  PubMed  Google Scholar 

  31. Parihar R, Nadella P, Lewis A, Jensen R, De Hoff C, Dierksheide JE et al. A phase I study of interleukin 12 with trastuzumab in patients with human epidermal growth factor receptor-2-overexpressing malignancies: analysis of sustained interferon gamma production in a subset of patients. Clin Cancer Res 2004; 10: 5027–5037.

    Article  CAS  PubMed  Google Scholar 

  32. Cao X, Zhang W, Wang J, Zhang M, Huang X, Hamada H et al. Therapy of established tumour with a hybrid cellular vaccine generated by using granulocyte-macrophage colony-stimulating factor genetically modified dendritic cells. Immunology 1999; 97: 616–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Briones J, Timmerman J, Levy R . In vivo antitumor effect of CD40L-transduced tumor cells as a vaccine for B-cell lymphoma. Cancer Res 2002; 62: 3195–3199.

    CAS  PubMed  Google Scholar 

  34. Kikuchi T, Crystal RG . Anti-tumor immunity induced by in vivo adenovirus vector-mediated expression of CD40 ligand in tumor cells. Hum Gene Ther 1999; 10: 1375–1387.

    Article  CAS  PubMed  Google Scholar 

  35. Yurkovetsky ZR, Shurin GV, Barry DA, Schuh AC, Shurin MR, Robbins PD . Comparative analysis of antitumor activity of CD40L, RANKL, and 4-1BBL in vivo following intratumoral administration of viral vectors or transduced dendritic cells. J Gene Med 2006; 8: 129–137.

    Article  CAS  PubMed  Google Scholar 

  36. Kato K, Cantwell MJ, Sharma S, Kipps TJ . Gene transfer of CD40-ligand induces autologous immune recognition of chronic lymphocytic leukemia B cells. J Clin Invest 1998; 101: 1133–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schultze JL, Grabbe S, von Bergwelt-Baildon MS . DC and CD40-activated B cells: current and future avenues to cellular cancer immunotherapy. Trends Immunol 2004; 25: 659–664.

    Article  CAS  PubMed  Google Scholar 

  38. Harrington LE, Mangan PR, Weaver CT . Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Curr Opin Immunol 2006; 18: 349–356.

    Article  CAS  PubMed  Google Scholar 

  39. Weaver CT, Hatton RD, Mangan PR, Harrington LE . IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 2007; 25: 821–852.

    Article  CAS  PubMed  Google Scholar 

  40. Spolski R, Leonard WJ . Cytokine mediators of Th17 function. Eur J Immunol 2009; 39: 658–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tesmer LA, Lundy SK, Sarkar S, Fox DA . Th17 cells in human disease. Immunol Rev 2008; 223: 87–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lezzi G, Sonderegger I, Ampenberger F, Schmitz N, Marsland BJ, Kopf M . CD40-CD40L cross-talk integrates strong antigenic signals and microbial stimuli to induce development of IL-17-producing CD4+ T cells. Proc Natl Acad Sci USA 2009; 106: 876–881.

    Article  CAS  Google Scholar 

  43. Perona-Wright G, Jenkins SJ, O'Connor RA, Zienkiewicz D, McSorley HJ, Maizels RM et al. A pivotal role for CD40-mediated IL-6 production by dendritic cells during IL-17 induction in vivo. J Immunol 2009; 182: 2808–2815.

    Article  CAS  PubMed  Google Scholar 

  44. Muranski P, Boni A, Antony PA, Cassard L, Irvine KR, Kaiser A et al. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 2008; 112: 362–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dhodapkar KM, Barbuto S, Matthews P, Kukreja A, Mazumder A, Vesole D et al. Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17-1 cells) enriched in the bone marrow of patients with myeloma. Blood 2008; 112: 2878–2885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ciric B, El-behi M, Cabrera R, Zhang GX, Rostami A . IL-23 drives pathogenic IL-17-producing CD8+ T cells. J Immunol 2009; 182: 5296–5305.

    Article  CAS  PubMed  Google Scholar 

  47. Hinrichs CS, Kaiser A, Paulos CM, Cassard L, Sanchez-Perez L, Heemskerk B et al. Type 17 CD8+ T cells display enhanced anti-tumor immunity. Blood 2009, e-pub ahead of print 26 May 2009; doi:10.1182/blood-2009-02-203935.

  48. Wierda WG, Cantwell MJ, Woods SJ, Rassenti LZ, Prussak CE, Kipps TJ . CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood 2000; 96: 2917–2924.

    CAS  PubMed  Google Scholar 

  49. Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 1999; 223: 77–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Instituto de Salud Carlos III (FIS 030386 and C03/010), Fundaciò d'Investigaciò Sant Pau and Fundación Mutua Madrileña.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Briones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, E., Moga, E., Barquinero, J. et al. Dendritic and tumor cell fusions transduced with adenovirus encoding CD40L eradicate B-cell lymphoma and induce a Th17-type response. Gene Ther 17, 469–477 (2010). https://doi.org/10.1038/gt.2009.150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.150

Keywords

This article is cited by

Search

Quick links